X 关闭
(资料图片)
导读1、对于二维连续变量的分布函数F(x,y),一般应用其概率密度函数f(x,y)的定积分求解;对于非连续变量,需要分别累加求得【与一维随机变量的求法相仿】。
2、∴本题中,当x∈(0,∞)、y∈(0,∞)时,分布函数F(x,y)=∫(-∞,x)∫(-∞,y)f(u,v)dv=∫(0,x)∫(-0,y)2e^(-2u-v)dv=∫(0,x)2e^(-2u)∫(-0,y)e^(-v)dv=[1-e^(-2x)][1-e^(-y)]。
3、当x∉(0,∞)、y∉(0,∞)时,分布函数F(x,y)=∫(-∞,0)∫(-∞,0)f(u,v)dv=0。
4、扩展资料由于随机变量X的取值 只取决于概率密度函数的积分,所以概率密度函数在个别点上的取值并不会影响随机变量的表现。
5、更准确来说,如果一个函数和X的概率密度函数取值不同的点只有有限个、可数无限个或者相对于整个实数轴来说测度为0(是一个零测集),那么这个函数也可以是X的概率密度函数。
6、连续型的随机变量取值在任意一点的概率都是0。
7、作为推论,连续型随机变量在区间上取值的概率与这个区间是开区间还是闭区间无关。
8、要注意的是,概率P{x=a}=0,但{X=a}并不是不可能事件。
本文到此分享完毕,希望对大家有所帮助。
免责声明:本文由用户上传,如有侵权请联系删除!X 关闭
Copyright © 2015-2022 热讯洁具网 版权所有
备案号:豫ICP备20005723号-6
联系邮箱:29 59 11 57 8@qq.com